返回第208章 三项诺奖成果,滨海大学惊四方!(第3更)(1 / 2)风尘四神首页

关灯 护眼     字体:

上一章 目录 下一页

4月2日。

琅琊镇,滨海大学。

大型学术报告厅内。

一场重磅的新闻发布会,正在进行。

上百位媒体记者到场参加,场面极其隆重。

前排座位席上。

坐着许多物理和化学领域的业界大咖、两院院士。

现场主持人,开口道:“女士们,先生们,欢迎出席滨海大学重磅科研成果发布会&学术会议。

滨海大学是一所创建没多久的学校,但我校拥有多位学术大咖。

比如,滨海大学副校长、夏国科学院院士、黎曼猜想证明者——赵玉秀院士。

比如,滨海大学副校长、夏国科学院副院长、诺贝尔物理学奖得主、国家最高科学技术奖得主——李明陌院士。

比如,滨海大学物理学院新任院长、夏国科学院院士、诺贝尔物理学奖得主、国家最高科学技术奖得主——李子华院士。

而就在今天。

李明陌院士、李子华院士,以及滨海大学校长李子奕,将公布最新的科研成果,请大家掌声鼓励!”

话音落下。

现场掌声阵阵,经久不息。

李子华、李明陌、赵玉秀、李子奕,都是滨海李家人,在外界享誉盛名。

就凭几人的咖位。

他们肯定能发布让学术界为之轰动的科研成果!

……

接下来。

李明陌率先上台。

他环顾四周,开口道:“众所周知,硅是目前应用最广泛的半导体材料,达到芯片制造所需要的99.99999999%纯度。

不过,随着芯片小型化发展。

硅的短板与市场需求的矛盾也日益突出,例如传导热量性能不佳、空穴迁移率不够高等。

科学界,一直在探索半导体新材料,例如砷化镓、氮化镓、碳化硅、金刚石、氧化锌、氮化铝等。

近段时间,我验证出一种比硅导电导热性能更佳、有望替代硅的材料——立方砷化硼(c-BAs)。

通过瞬态反射显微成像测定。

立方砷化硼的高双极性迁移率,达到1550cm2V1s1。

立方砷化硼的室温下高热导率,达到1300Wm1K1。

这两个数据,说明立方砷化硼的合成,不需要高温高压,在大尺寸制造方面,可以满足工业需求。

从业界的角度来看。

芯片的散热问题严重阻碍了其运算速度。

立方砷化硼,能解决当前芯片散热的瓶颈问题。

事实的确如此。

我在实验室里,已经将立方砷化硼应用到稍大尺寸的二极管、三极管和场效应晶体中。

同时,我和滨海芯片有限公司达成合作,已经将立方砷化硼应用至芯片里。

数据现实,立方砷化硼性能非常出众,是目前为止性能最好的半导体材料。

它能替代现有的硅基元器件,掀起新一轮的芯片半导体革命……”

新一轮芯片半导体革命?

在场众人都双眼放光。

诺奖得主李明陌院士,又取得了重磅级科研突破!

暂且不说半导体领域的变革。

光是这份科研成果。

就已经是诺奖级别的成就!

李明陌院士,已经获得过诺贝尔物理学奖。

但不远的将来。

他或许能获得人生中第二次诺贝尔物理学奖!

……

接下来。

西装革履的李子华院士,走上高台。

他将U盘放进USB接口,读取论文。

论文标题为《焦耳热闪蒸技术!让石墨烯秒变白菜价!》

看到这个标题,现场一片哗然。

石墨烯目前的商业价值为每吨7万美元至20万美元之间。

让昂贵的石墨烯变白菜价,是什么鬼?

如果石墨烯真的变成白菜价,岂不是意味着新一轮的材料革命即将到来?

李子华操作PPT的同时,介绍道:“焦耳热闪蒸技术,是一种新型碳化物合成方法。

具体操作方法是,用毫秒级的电流脉冲通过前驱体,使样品达到3000K以上的超高温,然后迅速冷却到室温。

基于此,我成功合成TiC、ZrC、HFC、VBC、TaC、Cr2C3、MoC、W2C等13种重要元素碳化物和B4C、SiC共价碳化物,表现出良好的通用性。

再通过控制脉冲电压,选择性合成热力学稳定的β-Mo2C、亚稳态α-MoCl1-x和η-MoCl1-x等相纯碳化钼。

β-Mo2C具有最好的HER性能,过电位为-220 mV,塔菲尔斜率为68 mV dec?1,具有出色的耐用性。

无论是石油焦炭、煤炭、食品废弃物、橡胶轮胎还是塑料垃圾,都可以使用焦耳热闪蒸技术,在不到100毫秒的时间内,使其变成无焦相控的碳化物纳米晶。

传统的机械剥离法、氧化还原法、SiC外延生长法、化学气相沉积法等生产方法,想要生产石墨烯,成本较高。

而焦耳热闪蒸技术,可以实现低成本、批量生产石墨烯,电能仅为2.2~8.6 kJ g?1。

我在实验室里,每天可以生产1千克的石墨烯,电力成本仅仅只有1.06元,彻底实现石墨烯白菜价!

焦耳热闪蒸石墨烯,还能捕捉二氧化碳和甲烷等温室气体,更加环保。

当然,由于实验室每天产量非常有限。

今后,我会和学校科研单位合作,加大投入生产,并接受市场应用测试,最后实现大规模应用……”

话音落下。

现场全体起立,掌声阵阵。

所有人心里都清楚。

李子华是凭借常温超导体,而获得诺贝尔物理学奖的!

常温超导体怎么来?

他的研究表明。

本站域名已经更换为m.adouyinxs.com 。请牢记。
『加入书签,方便阅读』

上一章 目录 下一页